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Abstract
Quasiclassical generalized Weierstrass representation (GWR) for highly
corrugated surfaces in R

4 with a slow modulation is proposed. Integrable
deformations of such surfaces are described by the dispersionless Davey–
Stewartson (DS) hierarchy. Quasiclassical GWRs for other four-dimensional
spaces and the dispersionless DS system are discussed too.

PACS numbers: 02.20.−a, 02.30.Ik, 02.40.Re

1. Introduction

Classical Weierstrass representation is the basic analytic tool used to study and analyze
minimal surfaces both in mathematics and in applications (see, e.g., [1–3]). Its generalizations
to generic surfaces conformally immersed into the three- and four-dimensional spaces have
been proposed recently in [4–8]. These generalized Weierstrass representations (GWRs) were
based on the two-dimensional Dirac equation and they allow us to construct any analytic surface
in R4 and R3. The hierarchies of the Davey–Stewartson (DS) and modified Veselov–Novikov
(mVN) equations generate the integrable deformations of surfaces in R4 and R3, respectively,
[4, 6]. GWRs provide us with an effective analytic tool to study various problems both
for generic surfaces and special classes of surfaces. GWRs are also quite useful in numerous
applications in applied mathematics, string theory, membrane theory and other fields of physics
(see, e.g., [9–17]).

Most of the papers on this subject and results obtained have been concerned with a smooth
case. On the other hand, irregular, corrugated surfaces also have attracted interest in various
fields, from applied physics and technology to pure mathematics (see, e.g., [17–25]).

In the present paper, we propose a Weierstrass-type representation for highly corrugated
surfaces with a slow modulation in the four- and three-dimensional Euclidean spaces. It is the
quasiclassical limit of the generalized Weierstrass representation for surfaces in R4 and R

3

introduced in [4–6]. The quasiclassical GWR is based on the quasiclassical limit of the Dirac
equation. It allows us to construct surfaces in R4 and R

3 with highly oscillating (corrugated)
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profiles and slow modulations of these oscillations characterized by a small parameter ε = l
L

,
where l and L are typical scales of oscillations and modulations, respectively. In the lowest
order in ε the coordinates Xj (j = 1, 2, 3, 4) of such surfaces in R4 are of the form

X1 + iX2 = A(εz, εz) exp

[
i
S12(εz, εz)

ε

]
,

X3 + iX4 = B(εz, εz) exp

[
i
S34(εz, εz)

ε

]
,

(1.1)

where z and z are the conformal coordinates on a surface, A and B are some smooth functions,
and S12 and S34 are related to solutions of the eikonal-type equation. The corresponding
metric and mean curvature are finite functions of the slow variables εz, εz while the Gaussian
curvature is of the order ε2.

Integrable deformations of such corrugated surfaces in R4 and R3 are induced by the
hierarchy of dispersionless DS-II (dDS) equations and dispersionless mNV (dmNV) equations.
These deformations preserve the quasiclassical limit of the Willmore functional (Canham–
Helfrich bending energy for membranes or the Polyakov extrinsic action for strings). The
dispersionless limit of the generic DS system is considered too.

2. Generalized Weierstrass representation for surfaces in R4

The generalized Weierstrass representation (GWR) for the surface in R4 proposed in [6] is
based on the linear systems (two-dimensional Dirac equations)

�1z = p�1, �1z = −p�1, (2.1)

�2z = p�2, �2z = −p�2, (2.2)

where �k and �k(k = 1, 2) are complex-valued functions of z, z ∈ C (bar denotes a complex
conjugation) and p(z, z) is a complex-valued function. One then defines four real-valued
functions Xj(z, z), j = 1, 2, 3, 4 by the formulae

X1 + iX2 =
∫

�

(−�1�2 dz′ + �1�2 dz′), (2.3)

X3 + iX4 = −
∫

�

(�1�2 dz′ + �1�2 dz′), (2.4)

where � is an arbitrary contour in C.

Proposition 1 [6]. For any function p(z, z) and any solutions (�k,�k) of the system (2.1)–
(2.2), the formulae (2.3)–(2.4) define a conformal immersion of a surface into R

4 with the
induced metric

ds2 = u1u2 dz dz, (2.5)

the Gaussian curvature

K = − 4

u1u2
(log u1u2)zz, (2.6)

squared mean curvature vector

H2 = 2
|p|2
u1u2

(2.7)
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and the Willmore functional given by

W
def=

∫ ∫
G

H2[ds] = 4
∫ ∫

G

|p|2 dx dy (2.8)

where uk = |�k|2 + |�k|2 and z = x + iy. Moreover, any regular surface in R
4 can be

constructed via the GWR (2.1)–(2.4) [6, 15].

In the particular case p = p,�2 = ±�1,�2 = ±�1 one has X4
z = X4

z = 0 and the
formulae (2.1)–(2.4) define surface in R3 [4, 5].

Integrable dynamics of surfaces constructed via the GWR (2.1)–(2.4) is induced by the
integrable evolutions of the potential p(z, z, t) and the functions �k,�k with respect to the
deformation parameters tl . They are given by the DS-II hierarchy [6, 7]. The simplest example
is the DS-II equation

ipt2 + pzz + pzz + (ω1 + ω2)p = 0,

ω1z = 2 |p|2z , ω2z = 2 |p|2z ,
(2.9)

for which

i�1t2 + �1zz + ω1�1 + pz�1 − p�1z = 0

i�1t2 + pz�1 − p�1z − �1zz − ω2�1 = 0
(2.10)

and
−i�2t2 + �2zz + ω1�2 + pz�2 − p�2z = 0,

−i�2t2 + pz�2 − p�2z − �2zz − ω2�2 = 0.
(2.11)

In the reduction to the three-dimensional case the constraint p = p is compatible only
with odd DS-II flows (times t2l+1) and the DS hierarchy is reduced to the mVN hierarchy. The
lowest member of this hierarchy is given by the mVN equation

pt + pzzz + pzzz + 3ωpz + 3ωpz + 3
2pωz + 3

2pωz = 0,

ωz = (p2)z.
(2.12)

The DS equation (2.8) and the whole DS hierarchy are amenable to the inverse spectral
transform method (see, e.g., [26, 27]) and they have a number of remarkable properties typical
for integrable (2+1)-dimensional equations. Integrable dynamics of surfaces in R

4 inherits all
these properties [6, 7]. One of the remarkable features of such dynamics is that the Willmore
functional W (2.7) remains invariant (Wt = 0) [6, 7]. In virtue of the linearity of the basic
problem (2.1) the GWR is quite a useful tool to study the various problems in physics and
mathematics (see, e.g., [5–17]).

3. Quasiclassical Weierstrass representation

In this paper, we shall consider a class of surfaces in R
4 which can be characterized by two

scales l and L such that the parameter ε = l
L

� 1. A simple example of such a surface is
provided by the profile of a slowly modulated wavetrain for which l is a typical wavelength
and L is a typical length of modulation. Theory of such highly oscillating waves with slow
modulations is well developed (see, e.g., [28, 29]). Following the ideas of this Whitham (or
nonlinear WKB) theory we will study surfaces in R

4 for which the coordinates X1, X2, X3, X4

have the form

Xi(z, z) =
∞∑

n=0

εnF i
n

( −→
S (εz, εz)

ε
, εz, εz

)
, i = 1, 2, 3, 4, (3.1)
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where
−→
S = (S1, S2, S3, S4) and F i

n are smooth functions of slow variables ξ = εz, ξ = εz

and the small parameter ε is defined above. The arguments Si

ε
in F i

n describe a fast variation
of a surface while the rest of arguments correspond to slow modulations.

There are different ways to specify functions F i
n. Here we will consider one of them

induced by the similar quasiclassical (WKB) limit of the GWR (2.1)–(2.4).
Thus, we begin with the quasiclassical limit of the Dirac equations (2.1)–(2.2). Following

the discussion of the one-dimensional case by Zakharov [30] (dispersionless limit of the
nonlinear Schrödinger equation), we take

p = exp

(
i(S1(εz, εz) − S̃1(εz, εz))

ε

) ∞∑
n=0

εnpn(εz, εz), (3.2)

�k = exp

(
iSk(εz, εz)

ε

) ∞∑
n=0

εn�kn(εz, εz), (3.3)

�k = exp

(
ĩSk(εz, εz)

ε

) ∞∑
n=0

εn�kn(εz, εz), (3.4)

where Sk, S̃k, �kn,�kn, k = 1, 2 are smooth functions of slow variables ξ = εz, ξ = εz, Sk =
Sk, S̃k = S̃k and S1 + S2 = S̃1 + S̃2. The properties of the asymptotic expansions of the type
(3.1)–(3.4) are quite well studied [28, 29]. Here we restrict ourselves to the lowest order
terms. In this order one has

�1 = �10 exp

(
iS1

ε

)
, �1 = �10 exp

(
ĩS1

ε

)
, (3.5)

�2 = �20 exp

(
iS2

ε

)
, �2 = �20 exp

(
ĩS2

ε

)
, (3.6)

p = p0 exp

(
i(S1 − S̃1)

ε

)
. (3.7)

Substituting these expressions into (2.1)–(2.2), one in zero order in ε gets the algebraic
equations (

iS1ξ −p0

p0 ĩS1ξ

) (
�10

�10

)
= 0,

(
iS2ξ −p0

p0 ĩS2ξ

)(
�20

�20

)
= 0. (3.8)

The existence of nontrivial solutions for these systems imply that p0 and Sk, S̃k should
obey the equations

det

(
iS1ξ ,−p0

p0, ĩS1ξ

)
= −S1ξ S̃1ξ + |p0|2 = 0, (3.9)

det

(
iS2ξ ,−p0

p0, ĩS2ξ

)
= −S2ξ S̃2ξ + |p0|2 = 0. (3.10)

Furthermore, using the differential form of (2.3)–(2.4), namely equations

(X1 + iX2)z = −�1�2, (X1 + iX2)z = �1�2,

(X3 + iX4)z = �1�2, (X3 + iX4)z = �1�2,
(3.11)
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one concludes that in the lowest order in ε one has

X1 + iX2 = (
X1

0 + iX2
0

)
exp

(
iS12

ε

)
, (3.12)

X3 + iX4 = (
X3

0 + iX4
0

)
exp

(
iS34

ε

)
, (3.13)

where

S12 = S1 + S2 = S̃1 + S̃2 (3.14)

S34 = S1 − S̃2 = S̃1 − S2 (3.15)

and

X1
0 + iX2

0 = −i
�10�20

(S1 + S2)ξ
= i

�10�20

(S1 + S2)ξ
, (3.16)

X3
0 + iX4

0 = −i
�10�20

(S1 − S̃2)ξ
= −i

�10�20

(S1 − S̃2)ξ
. (3.17)

The last two expressions in the formulae (3.16) and (3.17) are equal to each other due to
equations (3.9)–(3.10) and differential cosequences of the constraint S1 + S2 = S̃1 + S̃2.

Proposition 2. The formulae (3.12)–(3.15) and (3.8)–(3.10), (3.16), (3.17) define a conformal
immersion of highly corrugated (oscillating) surface with the slow modulation into R4. The
metric of a surface is given by

ds2
0 = u10u20 dz dz = 1

ε2
u10u20 dξ dξ, (3.18)

Gaussian curvature

K0 = −ε2 2

u10u20
(log (u10u20))ξξ , (3.19)

squared mean curvature

H2
0 = 4

|p0|2
u10u20

(3.20)

and Willmore functional

W0 = 4
∫ ∫

G

|p0|2 dx dy = 1

ε2
4
∫ ∫

Gε

|p0|2 dξ1 dξ2, (3.21)

where uk0(ξ, ξ) = |�k0|2 + |�k0|2 , k = 1, 2, ξ = ξ1 + dξ2 and Gε is the rescaled domain G
(ξ1 = εx, ξ2 = εy).

We shall refer to these formulae as the quasiclassical GWR and the corresponding surfaces
as quasiclassical surfaces. For such surfaces the metric is conformal to a smooth one, Gaussian
curvature is small (of the order ε2) while the squared mean curvature is finite and smooth. We
emphasize that this quasiclassical GWR corresponds to the lowest order terms in the expansions
(3.1)–(3.4). Higher order corrections, their properties and geometrical interpretation will be
considered elsewhere.
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In the three-dimensional case for which p = p,�1 = �2,�1 = �2 one has
S1 = S̃1 = S2 = S̃2. Using the formulae (3.11) in this case one concludes that the quasiclassical
GWR in R3 is given by the formulae

X1 + iX2 = −i
�2

10

2Sξ

exp

(
2iS1

ε

)
X3 = 1

ε
B(ξ, ξ) Bξ = �10�10 (3.22)

and

S1ξ S1ξ = p2
0 (3.23)

The metric, Gaussian curvature, mean curvature and Willmore functional are given by formulae
(3.18)–(3.21) with u10 = u20 = 2 |�10|2. For more details on the quasiclassical GWR in R3

see [31].

4. Integrable deformations via the dispersionless DS-II hierarchy

Deformations of quasiclassical surfaces described above are given by the dispersionless
limit of the DS-II hierarchy. To get this limit one, as usual (at the (1+1)-dimensional
case, see, e.g., [30]), assumes that the dependence of all quantities on t is a slow one, i.e.
p0 = p0(εz, εz, εt), Sk = Sk(εz, εz, εt) and so on. At the first order in ε equation (2.8) gives
(τ = εt2)

Sτ + S2
ξ + S2

ξ
− (ω10 + ω20) = 0,

ω10ξ = 2 |p0|2ξ , ω20ξ = 2 |p0|2ξ ,
(4.1)

while from the system (2.9) one gets(
i(S1τ + S2

1ξ
− ω10),−p0(2S̃1ξ − S1ξ )

p0(−S̃1ξ + 2S1ξ ),−i(̃S1τ − S̃2
1ξ + ω20)

) (
�10

�10

)
= 0. (4.2)

The system (2.10) give rises to a systems similar to this. The existence of nontrivial
solutions for the system (3.8) and (4.2) implies the following independent constraints:

S1ξ S̃1ξ − |p0|2 = 0, (4.3)

S1τ + S2
1ξ + S2

1ξ
− 2S1ξ S̃1ξ − ω10 = 0, (4.4)

S̃1τ − S̃2
1ξ − S̃2

1ξ
+ 2S1ξ S̃1ξ + ω20 = 0. (4.5)

This system and similar system for S2 and S̃2 define deformation of a surface induced by the
quasiclassical GWR.

The compatibility condition for the system (4.3)–(4.5) implies the following equation for
U = |p0|2:

Uτ + 2(USξ )ξ + 2(USξ )ξ = 0. (4.6)

The difference of equations (4.4) and (4.5) coincides with equation (4.1) which can be written
also as

Sτ + S2
ξ + S2

ξ
+ V = 0, Vξξ + 2Uξξ + 2Uξξ = 0, (4.7)

where V = −(ω10 + ω20). We will refer to the system (4.6) and (4.7) as the dispersionless
DS-II equation. It is the (2+1)-dimensional integrable extension of the dispersionless nonlinear
Schrödinger equation studied in [30].
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Equation (4.6) implies that for surfaces with rapidly decreasing U as |ξ | → 0 or for
compact surfaces

W0τ = ∂

∂τ

(
1

ε2

∫ ∫
Gε

U dξ dξ

)
= 0. (4.8)

Thus, deformation of quasiclassical surfaces via the dispersionless DS-II equation preserves
the value of the Willmore functional (3.21).

Similarly, the dispersionless DS-II hierarchy which can be constructed in a same manner
defines integrable deformations of quasiclassical surfaces generated by quasiclassical GWR.
The Willmore functional (3.21) remains invariant under all these deformations.

For surfaces in R3 generated by quasiclassical GWR (3.22) and (3.23) integrable
deformations are induced by the dispersionless mVN hierarchy the lowest member of which
is given by the dispersionless limit of equation (2.11), i.e. by the equation

p0τ + 3ω0p0ξ + 3ω0p0ξ + 3
2p0ω0ξ + 3

2p0ω0ξ = 0, ω0ξ = (
p2

0

)
ξ
. (4.9)

For more details on this case see [31].

5. GWRs in other four-dimensional spaces and dispersionless DS system

GWRs for surfaces and time-like surfaces in R2,2 and Minkovsky space R1,3 are rather similar
to that in R4 [7]. They are based on the general Dirac system

�x = p�, �y = q�, (5.1)

where all variables are complex valued and in concrete cases x and y are real or
complex conjugated and special constraints of the type q = p or p = p, q = q are
imposed. Deformations are defined by the well-known generic DS hierarchy (two-component
Kadomtsev–Petviashvili (KP) hierarchy). Its lowest member is given by the DS system (see,
e.g., [26, 27])

αpt = pxx + pyy + Vp,

αqt = −qxx − qyy − V q,

Vxy + 2 (pq)xx + 2 (pq)yy = 0,

(5.2)

where α is a parameter. This system is equivalent to the compatibility condition for the system
(5.1) and the system

α�t = �yy + ω1� + px� − p�x,

α�t = −qy� + q�y − �xx − ω2�,
(5.3)

where ω1x = −2(pq)y, ω2y = −2(pq)x, V = ω1 + ω2.

The quasiclassical version of these formulae and the corresponding quasiclassical GWRs
are readily obtained similar to the previous sections. Here, we will consider only the
dispersionless limit of the system (5.2) since it is of interest also of its own.

First, we introduce the slow variables ξ = εx, η = εy, τ = εt where ε is a small
parameter and assume that in the lowest order in ε

� = �0 exp

(
S1

ε

)
, � = �0 exp

(
S2

ε

)
,

p = p0 exp

(
S1 − S2

ε

)
, q = q0 exp

(
S2 − S1

ε

)
,

(5.4)
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where �0,�0, p0, q0 are smooth functions of slow variables. Substituting these expressions
into the linear problems (5.1) and (5.3), one, in the zero order in ε, gets the system of four
equations

S1ξ�0 − p0�0 = 0, q0�0 − S2η�0 = 0, (5.5)(
αS1τ − S2

1η − ω10
)
�0 − (S1ξ − 2S2ξ )p0�0 = 0,(

S2η − 2S1η

)
q0�0 +

(
αS2τ + S2

2ξ + ω20
)
�0 = 0.

(5.6)

Equating to zero determinants for all subsystems of the system of equations (5.5) and
(5.6), composed of any two equations from them, or simply eliminating �0 and �0 from this
system, one gets the following system of three independent equations:

S1ξ S2η − p0q0 = 0,

αS1τ − S2
1ξ − S2

1η + 2S1ξ S2η − ω10 = 0,

αS2τ + S2
2ξ + S2

2η − 2S1ηS2η + ω20 = 0.

(5.7)

The compatibility condition for these equations is equivalent to the equation

αU0τ − 2∇(U0∇S) = 0, (5.8)

where U0 = p0q0, S = S1 − S2 and ∇ = (∂ξ , ∂η) while the difference of the second and third
equations (5.7) gives

αSτ − (∇S)2 + V0 = 0, (5.9)

where

V0ξη − 2�U0 = 0 (5.10)

and � = ∂2
ξ + ∂2

η . The system (5.8)–(5.10) represents the dispersionless limit of the DS
system (5.2). We note that equations (5.9) and (5.10) are just the dispersionless limit of
equations (5.2) while equation (5.8) is the dispersionless limit of the first conservation law
α(pq)t +(pqx −pxq)x +(pqy −pyq)y = 0 for the DS system (5.2). At α = −i and q0 = −p0
this system coincides with the system (4.6) and (4.7).

The system (5.8)–(5.10) is quite close in the form to the classical hydrodynamical
equations of shallow water for gradient flows (see, e.g., [30]). In the one-dimensional limit
∂ξ = ∂η it coincides with the one-dimensional Benney system (see [30]). So the system
(5.8)–(5.10) is its two-dimensional integrable generalization.

It differs from the (2+1)-dimensional extension of the Benney system, namely

aτ + (au)ξ = 0, uτ + 1
2 (u2)ξ + ωξ = 0, ωη + aξ = 0, (5.11)

given in [32, 33] which is equivalent to the compatibility condition for the system of Hamilton–
Jacobi equations

χη = a

χξ − u
, χτ = − 1

2χ2
ξ − ω. (5.12)

To compare this system with (5.7) it is instructive to rewrite (5.7) in the equivalent form
introducing S and χ defined by S1 = S + χ, S2 = χ. In these variables, the first and second
equations (5.7) take the form

χη = − U0

χξ + Sξ

, χτ = χ2
ξ − χ2

η − 2Sηχη − ω20. (5.13)

Though the only difference between (5.12) and (5.13) is in their time parts, the system
(5.8)–(5.10) is symmetric in ξ and η in contrast to the system (5.11).
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The dispersionless limit of the multi-component KP hierarchy has been discussed recently
in [34]. But, it seems, that the system (5.8)–(5.10) was missed there.

Finally, it is worth noting that the system (5.8)–(5.10) has a natural interpretation within
the classical mechanics as the system which describes the integrable deformations of the
potential V0 in the Hamilton–Jacobi equation (5.9) driven by equations (5.7) and (5.10).
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